Species Tag: Version: Date: Contributor:	31006 1 1/2/2006 H. M. Pickett	Species Name:	Methoxy CH3O
Lines Listed:	10936	Q(300.0) =	19611.012
Freq. $(GHz) <$	3000	Q(225.0) =	13418.377
Max. J:	20	Q(150.0) =	7306.342
LOGSTR0 =	-8.0	Q(75.00) =	2279.817
LOGSTR1 =	-8.0	Q(37.50) =	703.720
Isotope Corr.:	0.0	Q(18.75) =	248.428
Egy. $(cm^{-1}) >$	0.0	Q(9.375) =	101.742
$\mu_a =$	2.12	A=	513887.
$\mu_b =$	0.	B=	27930.123
$\mu_c =$	0.	C=	В

The observed lines are from: Y. Endo, S. Saio, and E. Hirota, 1984, J. Chem. Phys. 81, 122. The dipole moment was calculated by: C. F. Jackels, 1982, J. Chem. Phys. 76, 505. While there is a b-type dipole allowed by symmetry, its value was set to zero for this prediction. The transitions with $\Delta K \neq 0$ have at least 10 GHz uncertainty. The quanta are N,K,v,t,F where v=0 for $\Lambda=1$ and v=1 for $\Lambda=-1$. The spin designation, t, is

t	N- F	J - F	sym	I_{tot}
0	-2.0	-1.5	0	1.5
1	-1.0	-0.5	2	0.5
2	-1.0	-0.5	4	0.5
3	-1.0	-0.5	0	1.5
4	-1.0	-1.5	0	1.5
5	0.0	0.5	2	0.5
6	0.0	0.5	4	0.5
7	0.0	-0.5	2	0.5
8	0.0	-0.5	4	0.5
9	0.0	0.5	0	1.5
10	0.0	-0.5	0	1.5
11	1.0	0.5	2	0.5
12	1.0	0.5	4	0.5
13	1.0	1.5	0	1.5
14	1.0	0.5	0	1.5
15	2.0	1.5	0	1.5

where sym = 0, 2, 4 for A,E,E respectively.